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Executive Summary 

This report summarizes the research conducted as part of Phase 2 of the Railroad Artificial 
Intelligence Intruder Learning System (RAIILS), led by a team of researchers at Michigan 
Technological University (Michigan Tech) and sponsored by the Federal Railroad 
Administration (FRA) from March 2019 to September 2021. The project had two primary 
objectives: (1) to help FRA understand how Artificial Intelligence (AI) models could be applied 
to railroad trespass detection, and (2) to assist North American railroads in developing machine 
learning capabilities to detect railroad trespassers in real time. The Phase 1 report served 
primarily as a literature review and focused on addressing the first of these goals. 
In Phase 2, the research team developed new knowledge, insights, and implementation tools to 
assist FRA in improving trespass detection systems using predictive analytics. Because AI 
concepts and predictive analytics are quite broad and often ill-defined, the particular AI concepts 
of interest were deep convolutional neural networks operating on resource-constrained robotic 
platforms. While recognizing that the fields of AI and analytics extend well beyond this class of 
models, the unique capabilities afforded by high-detection accuracy and hardware-enabled, real-
time operation makes the use of neural networks an attractive tool for trespasser prevention 
efforts. In addition, this project focused on the systems engineering portion of the problem – 
namely how one goes from a collection of algorithmic tools that solve a very specific problem 
(i.e., detecting a person in an image), to a useful and integrated solution that addresses a discrete 
social problem: mitigating or eliminating trespassing. 
The Michigan Tech team developed a robot-mounted system for automated trespasser detection. 
This system, consisting of synergistic sensing, algorithms, and communications, was integrated 
into both ground and air-based robotic platforms, with detections taking place in real time via an 
onboard computer. Upon detection, an email and/or text message containing an image of the 
potential trespassing event was automatically transmitted via cell networks. By explicitly 
constructing this proof-of-concept demonstration, the team showed that AI-enabled technologies 
have the potential to save lives by (1) automating detection of trespassing events in real time and 
(2) reducing the time required to respond to trespassing events by using existing communications 
infrastructure. This research effort resulted in a cost-effective tool that, with appropriate 
maturation, could serve to complement existing trespasser mitigation strategies.  
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1. Introduction 

The use of unmanned vehicles is becoming increasingly common in the fields of remote sensing 
and transportation research. These platforms afford researchers the opportunity to collect data 
from vantage points that optimize the utility sensors such as cameras and light detection and 
ranging (LiDAR).  
This report summarizes the research conducted as part of Phase 2 of the Railroad Artificial 
Intelligence Intruder Learning System (RAIILS), led by a team of researchers at Michigan 
Technological University (Michigan Tech) and sponsored by the Federal Railroad 
Administration (FRA) from March 2019 to September 2021. The project had two primary 
objectives: (1) to help FRA understand how Artificial Intelligence (AI) models could be applied 
to railroad trespass detection, and (2) to assist North American railroads in developing machine 
learning capabilities to detect railroad trespassers in real time. 

1.1 Background 

1.1.1 Trespassing 
In 2018, FRA prepared a detailed report [2], in response to a congressional request on the causal 
factors that led to trespassing incidents on railroad property. This report found that rail trespass 
accidents cost society about $43 billion from 2012–2016. In the U.S., 42 percent of railroad-
related deaths are a result of trespassing, as compared to 17 percent in the European Union [1]. 
Note that this number encompasses only the direct monetary costs associated with trespass 
events and does not account for emotional distress or productivity losses. Trespassing continues 
to be a serious problem for the rail industry, and the number of casualties having increased 
significantly since 2011. In 2020, the FRA Office of Safety Analysis reported 1,091 trespass 
casualties, with 536 of them fatalities [5]. Thus, there is a clear need for technologies that can 
alleviate both the human and financial costs of trespassing-related accidents. 

1.1.2 AI and Autonomous Technology 
There has been increased interest from Federal agencies on the use of AI and autonomous 
technologies in the railroad industry. In September 2021, FRA supported additional research on 
AI-enabled static cameras as well as the use of UAVs for rail grade monitoring. The present 
work fills research gaps on (1) real-time detection, (2) automated notification, and (3) integration 
into robot platforms.  
The authors note that although there are several studies that feature the use of UAVs for several 
rail-related applications, the present work is unique in that the processing is taking place “at the 
edge.”1 This edge computing framework allows for minimal delay between data collection and 
data analysis, potentially improving the likelihood of timely intervention in trespassing events.  

1.2 Objectives 
As noted above, the overall project had the long-term objective to investigate technologies with a 
high potential of helping to reduce the number of trespasser deaths and injuries. The guiding 

 
1 Edge computing is a technical term that describes bringing computation and data storage closer to the data sources. 

https://en.wikipedia.org/wiki/Edge_computing
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objective during Phase 2 was to assist in the development of machine learning techniques for 
real-time trespasser detection. In particular: 

(a) Implement AI/analytics based techniques that had the potential to address the trespassing 
problem.  

(b) Demonstrate the feasibility of adapting these techniques to an edge-computing 
framework by executing them on a mobile robot platform. 

(c) Test the proposed solution in relevant real-world scenario.  
In addition, the team developed two additional capabilities in support of these objectives – (1) 
the ability to transmit compressed video data to a server for additional processing and (2) 
partially autonomous navigation via a web-interface to the robots’ navigation board. Figure 1 
shows a schematic representation of the trespasser detection and alerting system.  

 
Figure 1. Component diagram of trespasser detection and alert system 

1.3 Overall Approach 
The Phase 1 literature review, including an overview of technical expertise within MTRI and 
existing technologies that might be applied to the problem, informed the Phase 2 approach. 
Initial steps taken toward development of a prototype system in Phase 1 also proved useful 
during Phase 2. Researchers started with benchtop testing with initial algorithms and sensors. 
They then moved to porting these algorithms and sensors on mobile platforms, including a 
unmanned ground vehicle (UGV) and unmanned air vehicle (UAV). They then performed real-
world scenarios to test and improve upon these platforms. 
The team considered the following trade-space variables when exploring initial design concepts 
for the AI-enabled UAV-based trespasser detection system: 

1. Real-time detection 
2. Asynchronous communication 

3. Ease of use 
4. Flexibility 

5. Regulatory considerations 
The sections that follow detail the rationale behind the design choices to address each of these 
requirements.  
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1.4 Scope 
The objective of this research project was to develop a prototype system capable of detecting 
trespassing activities on the right of way of any given railroad using artificial intelligence 
capabilities, and by using a unmanned aerial vehicle.  

1.5 Organization of the Report 
Researchers presented the work performed in this report as follows: Section 1 introduces the 
work. Section 2 describes experiments performed and then an analysis took place in Section 3. 
Section 4 documents the real-world testing that occurred in Oscoda, MI, and Milford, MI. 
Section 5 summarizes the work conducted with concluding results.  



 

5 

2. Initial Benchtop Testing 

2.1 Baseline Experiments 
This section presents the baseline experiments used in this work. 

2.1.1 Raspberry Pi 
Baseline experiments made use of a popular single-board computer called the Raspberry Pi. 
These computers have a number of advantages including cost, widespread community support, 
and a large number of out-of-the-box compatible sensors. This computer was paired with an 
8MP standalone camera module to support streaming data with minimal power draw. Although 
researchers found the actual computational capability of the Pi somewhat lacking for high-
throughput video processing, the size, weight, and power (SWaP) considerations made the 
Raspberry Pi an attractive platform for possible deployment on a UAV. Table 1 shoes a summary 
of the typical specifications for the onboard hardware needed to perform the required tasks.  

Table 1. Raspberry Pi Technical Specifications  

Feature Specification 

SoC Broadcom BCM2711 

CPU 4x Cortex A72 @1.8GHz 

Memory Up to 8GB 

Connectivity Gigabit Ethernet, 2.4/5 GHz WiFi  

I/O 28 × GPIO supporting either 1.8v or 3.3v 

Power rating 600 mA (3 W) idle, 1.25 A (6.25 W) under stress 

As part of the initial testing, researchers used the Darknet neural network architecture [1]. The 
Darknet architecture was one of the breakthrough algorithms in real-time person detection. In 
addition, with the software being written in C, the algorithm was amenable to deployment on a 
wide range of platforms – including those without a powerful graphics processing unit (GPU) 
such as the Raspberry Pi. Although this model has been superseded by new architectures tailor-
made to run on resource-limited devices, Darknet architecture remains popular as a feature-
extraction tool for a wide range of machine-vision applications. 
Initial validation of the algorithm was completed offline; video data was collected and post-
processed on the Raspberry Pi. Figure 2 shoes the Raspberry Pi and camera module used for the 
initial work. Video data was collected from atop a one-story building to simulate the viewing 
geometry from the drone. Researchers deliberately captured images with minimal stabilization to 
account for possible motion-induced blur during flight collections. Results from these 
experiments are shown in Figure 3.  
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Figure 2. Raspberry Pi and camera module used for initial benchtop testing 

   
Figure 3. Results from initial testing with rooftop data collection: left – correctly detected 

people; middle – missed detection; right – incorrect detection 

These initial experiments led to the following insights: 

• Camera blur would not present a significant problem for the detection algorithm.  

• The Raspberry Pi would likely have insufficient resources for real-time operation.  

• Algorithm performance deteriorated as the viewing geometry approached a nadir look 
angle.  

In addition, researchers observed empirically that front-facing individuals were generally better 
detected, as were those whose full, unobscured bodies were in the frame. They also observed a 
small but persistent false alarm rate. Prior experience with neural network models suggest that 
diagnosing the root cause of these algorithmic behaviors is generally quite difficult. The lesson 
here was the need for additional real-time post processing to mitigate these false alarms.  

2.1.2 Jetson Nano 
The initial experiments with the Raspberry Pi quickly highlighted the need for a more powerful 
computer to process the data. In particular, researchers found that to run in real time, the 
algorithms required a dedicated GPU. This requirement essentially limited the team to the Nvidia 
Jetson family of products. The Jetson line is a collection of single-board computers targeting 
Internet-of-Things and edge computing applications. Although there are other products that offer 
potentially similar performance such as field-programmable gate arrays, these are typically more 
difficult to debug and interface, making development slow and inefficient.  
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Researchers ultimately chose the Jetson Nano board as the target computing platform based on 
cost, and ran Ubuntu Linux natively. Software development was relatively straightforward as 
they could develop algorithms on a desktop Linux environment, and then simply copy the source 
files to the Nano. This rapid iteration was invaluable when they shifted to integrating the 
algorithms on the mobile platforms (see Figure 4). 

 
Figure 4. Jetson Nano board used for UxV experiments 

Note that the specifications of the Jetson Nano are quite similar to those of the Raspberry Pi – 
with the key difference being the more powerful GPU on the Nano (see Table 2). For CPU-
bound tasks, the Raspberry Pi is likely the better option. This distinction is relevant here as there 
are other non-neural network-based processing techniques (described in the next section) which 
might benefit from the Pi’s higher clock speed. 

Table 2. Jetson Nano Technical Specifications 

Feature Specification 

SoC Tegra 

CPU ARM Cortex-A57 MPCore Processor 

GPU NVIDIA Maxwell with 128 NVIDIA CUDA® cores 

Memory 4GB 64-bit LPDDR4, 1600MHz 25.6 GB/s 

Connectivity Gigabit Ethernet 

I/O GPIO, I2C, I2S, SPI, UART 

Power rating 10W @ 921 MHz GPU Clock 

2.1.3 Detection Algorithm 
Whereas the Raspberry Pi experiments used Darknet (sometimes also called YOLO) model as 
the backend for detection, when using the Jetson Nano, researchers chose a different model that 
was better able to use the GPU resources of the board. The MobileNet2 model that they used is a 
more modern single-shot detection algorithm with improved detection capabilities compared to 
the Darknet model [1]. The particular model that they used was trained using the COCO dataset 
and deployed using Nvidia’s Jetson Inference API. This model also occasionally reported 
spurious/incorrect detections. As incorrect detections were typically not persistent across frames 
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they chose to only report detections that were consistently present over 2 seconds’ worth of data. 
This threshold yielded an acceptable tradeoff between detections and false alarms.  

2.2 Thermal Camera Experiments 
In parallel with the optical camera experiments, researchers also carried out small data 
collections to determine whether existing AI algorithms would function with thermal camera 
inputs. Thermal imagery has a number of phenomenological differences from conventional color 
imagery. The longer wavelengths of infrared radiation limits the maximum effective resolution 
of thermal imagery. In addition, most commercial thermal cameras capture only a single channel 
of data, making the data functionally incompatible with object detection algorithms that expect 
3-channel color imagery. The team therefore expected the algorithm to altogether fail with 
thermal camera inputs.  
As a simple test, researchers replicated the single-channel imagery to generate synthetic 3-
channel imagery (i.e., with three identical channels). They then fed this false-color imagery into 
the Darknet architecture and found that (surprisingly) the algorithm could still detect people in 
the images (shown in Figure 5). One possible reason for this unexpected outcome is that many of 
the salient features that are useful for detecting people—such as facial features, limbs, and hair—
were still visible in the thermal imagery. The team did not carry out an exhaustive investigation 
of this as the detection rate was generally lower than with the color image inputs. The 
comparatively lower data rate of thermal camera video, however, makes the modality a good 
match for other non-neural network-based processing. 

 
Figure 5. Thermal camera data processed using Darknet architecture 

2.2.1 Robust PCA and Thermal Camera Video 
Robust principal component analysis (RPCA) is a numerical algorithm that originates from the 
field of compressed sensing [7]. Given an input matrix 𝑿𝑿, the goal of RPCA is to write 𝑿𝑿 as  

𝑿𝑿 = 𝑳𝑳 + 𝑺𝑺 

Where 𝐿𝐿 is a low-rank matrix and 𝑆𝑆 is a sparse matrix (that is, a matrix where only a small 
number of entries are nonzero) (see Figure 6). 
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Figure 6. RPCA decomposition which writes an input matrix 𝑿𝑿 as the sum of low rank and 

sparse matrices 

In the context of video processing, RPCA and related algorithms are commonly used for 
background subtraction [7]. In this setting, one typically considers each frame of a video as 
corresponding to a single column of the matrix 𝑋𝑋. In other words, each frame is “flattened” into a 
long vector by lexicographically listing the color values of each pixel in the image. For the 
problem of trespasser detection, the team considered RPCA as a tool for working with static 
thermal cameras. In particular, for a camera observing a locally stationary scene, potential 
trespassers will stand out against the stationary background of the scene.  
Note that although this technique lacks the granularity of the neural-network based approach in 
that it can only detect that there are foreground objects, it is considerably better understood and 
has significantly fewer tuning parameters. This technique has many benefits over classical 
computer vision techniques both in terms of performance and computational complexity. In 
particular, recent algorithmic developments for computing the RPCA decomposition make it 
suitable for real-time processing of video data (see Figure 7). 

 
Figure 7. Flattening procedure for processing video data with RPCA 

For project experiments, the team used the iterative soft-thresholding algorithm for computing 
RPCA. This algorithm, while not the fastest, admits a straightforward implementation from 
which researchers could easily validate the usefulness of the technique. An example of using this 
technique to process a video containing a simulated trespassing event is shown in Figure 8. The 
image on the right corresponds to a single column of the sparse 𝑆𝑆 matrix reshaped back into an 
image. The sparse matrix was thresholded to yield a logical mask that could then be used to 
index into the original image. Note that it is possible to apply morphological operations to the 
mask to obtain larger “blobs” that fully contain the potential trespasser.  
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Figure 8. Left – thermal camera input; right – sparse component of RPCA decomposition 

of video data 

One possible use case for this technique is for monitoring multiple areas of interest using static 
cameras. As this technique does not require the use of high-end GPUs, it could be readily 
adapted to run on existing computing resources. This technique does require a human-in-the-
loop, however, as output masks are not labeled with an object class. Lastly, note that this 
technique is also usable with static color/optical cameras, which makes multimodal collections 
synergistic with this approach.   
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3. Transition to Mobile Platforms 

3.1 Trade Space Analysis 
Armed with knowledge of the performance of the detection algorithms, researchers next moved 
to the systems engineering problem of creating a usable product that used these on the backend. 
As part of their initial planning, they considered the following trade space analysis shown in 
Table 3.  
Table 3. Design considerations and proposed solutions for UAV-based trespasser detection 

system 

The first of these was driven from the very practical consideration that minimizing response time 
is critical for producing favorable outcomes in trespass events. Asynchronous communication 
here means that one would only want to alert the operator(s) when a potential issue arises (in 
other words, event-driven messages from the UAV). In addition, the system must be easy to use 
to have any chance of being adopted by non-expert users (in particular users who are not experts 
in AI/predictive analytics). Such a system should also be flexible to allow for on-the-fly repairs 
and extensions. Lastly, the system ought be designed in accordance with local, State, and Federal 
regulations. 

3.2 Implementation 
The specific hardware/software choices that the team ultimately settled on is given in Table 4.  

Table 4. Specific component choices 

Each component was deliberately chosen and was meant to address one or more of the design 
constraints from Table 3. The UAV platform, for example, is one used by the Defense Advanced 
Research Projects Agency as part of its Offensive Swarm Enabled Tactics Program – meaning it 

Design Consideration Proposed Solution 

Real-time detection GPU-enabled onboard computer 

Asynchronous communication Detection-driven events, cell-network modem 

Ease of use Require user to only fly UAV, no additional task-switching 

Flexibility Use primarily open-source, COTS components 

Regulatory considerations Use federally-vetted platform, optional OS-level hardening 

Component Chosen Instantiation Cost 
UAV Platform Uvify IFO-S $6,000 
Onboard computer Nvidia Jetson Nano $110 
Camera Intel RealSense D435 $220 
Operating System Ubuntu Linux No Cost 
Communications Verizon Wireless cell network modem $250 
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was authorized by the U.S. Department of Defense. In practical terms, this has the effect of 
making it easier to gain approval for its use within other State/Federal agencies. The onboard 
computer has among the best SWaP characteristics, is cost-effective, and enables the execution 
of deep neural network architectures in real time. The use of Linux makes the system quite 
flexible and offers a high degree of re-configurability. Lastly, the use of a standalone cell-
network modem means the system can function wherever there is cell phone coverage. (Note: the 
communications can also function over a local network, such as a Wi-Fi mesh.). The images in 
Figure 9 capture the above discussion of the components used.  
This particular set of components is well-suited for the specific problem of detecting trespassers 
from a moving platform in real time. When some of these constraints are relaxed by, for 
example, specifying the camera will be static or the video data will be post-processed not 
necessarily in real time, alternative choices may offer competitive advantages.  

  
Figure 9. Left – Uvify IFO-S UAV; right – wireless cell dongle for transmission of 

trespasser detections 

3.3 UGV Implementation 
Near the end of the project, researchers also ported the algorithms to an Aion Robotics R4 UGV 
(Figure 10). The R4 comes standard with a Jetson Nano computer, so porting the algorithms to 
this platform was relatively straightforward. They designed and 3D printed a mount for the 
camera and attached the cell modem to the outside of the robot chassis. 

 
Figure 10. Aion Robotics R4 UGV 
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The UGV has the advantage of a longer run time, as the power draw is significantly lower when 
the robot is not actively in motion. As such, the potential use cases for the UGV over the UAV 
are situations where the region of interest can be adequately surveyed from the ground and for 
which the dynamics evolve slowly over the time scale of, e.g., 1 hour. These requirements would 
allow for the robot to be piloted into the region of interest and surveil/report (with minimal 
energy expenditure) – while allowing the operator to adjust the view as needed. The drawback, 
of course, is that the viewing geometry is not ideal for surveilling large areas. Additionally, the 
UGV requires somewhat benign terrain, although as discussed in the subsequent section, 
researchers operated the UGV on the track shoulder without difficulty. 
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4. Real-World Testing 

4.1 Oscoda, MI 
The first test site to validate the UAV mounted system (the UGV had not yet been fully 
integrated at the time of this test) was in Oscoda, MI. This site was chosen in consultation with 
project collaborators from Lake State Railway. The site featured a portion of decommissioned 
rail line owned by Lake State Railway – the fact that the line was decommissioned afforded 
researchers a great deal of freedom in safely testing different viewing geometries which would 
not be possible on active lines. An overhead view of the site as well as the relative location of the 
site is shown in Figure 11. 

  
Figure 11. Left – aerial view of Oscoda testing site; right – relative geographic location of 

site 

4.1.1 Regulatory Considerations 
Certain geographic locations have more stringent permitting requirements than others when it 
comes to operating UAVs. This particular site had a small municipal airport in the vicinity, 
which meant that the altitude limit of the UAV was slightly reduced. Although not strictly a 
requirement, the research team contacted the airport to let them know when and where they 
would be operating the UAV. Multiple members of the research team were FAA certified to pilot 
the UAV. For a production trespasser detection system, additional flight regulations may apply. 
Although not of a technical nature, these types of hurdles can have a significant impact on the 
success of emerging technologies.  

4.1.2 Testing Framework 
The testing team consisted of three individuals designated as the pilot, trespasser, and lookout. 
The pilot had not been on the team that developed any of the software for the UAV and so could 
act as something of an impartial judge on the usability of the system developed. Actions the 
trespasser was asked to perform were: 

1. Walking across the track 
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2. Walking along the track 
3. Loitering in the middle of track 

4. Walking beside the track 
For each of these scenarios, the pilot was asked to have the UAV: 

1. Hover in-place. 
2. Turn in-place. 

3. Approach the trespasser. 
The combination of these trespasser-UAV actions provided a qualitative sense of the 
performance envelope of the system.  

4.1.3 Results 
Researchers generally observed favorable detection performance despite a relatively low-
resolution sensor. The system could also successfully transmit images with the detected 
trespasser over the cell network. Detection was generally most effective when the height of the 
UAV was lower than 15 feet. Representative images, as generated by the onboard computer, are 
shown in Figure 12.  

 

 
Figure 12. Representative outputs from UAV-based trespasser detection system 

Researchers did, however, observe a few undesired characteristics of the system, which they 
sought to correct before the next deployment. First, when a string of detections was made in 
quick succession, the system was programmed to send out a correspondingly large number of 
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emails. In this situation, there was at times a large delay before the last image in the collection 
was received. Second, collecting the data for post-analysis was not very efficient, as it required 
researchers manually download the image attachments from each individual email. Third, as the 
data was not being recorded on the UAV itself, they had no quick means of verifying the 
integrity of the data when there were large delays in the email transmission.  

4.1.4 Algorithmic Revisions 
Rather than transmitting the data to an email address, the team determined that sending the data 
directly to a dedicated storage server would allow for reduced latency. To this end, they used one 
of their public-facing MTRI servers as the client for the incoming images. The authors note that 
one could easily set up a small, lightweight computer (even a Raspberry Pi) to act as the logger 
for the incoming data. The advantage of using an on-site logger is that server-side latency is 
reduced, meaning that the person in charge of responding to the trespassing incident receives an 
alert faster.  

Researchers also adapted the software so that the transmitted data would also be locally saved on 
the onboard storage. The data was compressed and stored as a video file, as this allowed for 
reduced CPU usage and also preserved storage on the local SD card.  

4.2 Milford, MI 
The Milford, MI, site was identified as a well-known trespassing hotspot by Lake State Railway. 
Before testing, the team visited the site and confirmed that trespassers were indeed quite 
common. In the team’s brief 20-minute survey, they observed no fewer than four groups of 
people cross the tracks. Somewhat disturbingly, although there was a “No Loitering” sign next to 
the track, there was also a set of conveniently placed stairs for anyone crossing the tracks (see 
Figure 13.  

 
Figure 13. Trespassing hotspot in Milford, MI, featuring easy-access stairs beside a no 

loitering notice 
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4.2.1 Testing Framework 
Because this test was conducted on an active line, the Michigan Tech team had two 
representatives from Lake State Railway present to ensure adherence to appropriate safety 
protocols. Again, members of our team acted as trespassers while one person piloted the UAV 
and another monitored the incoming data transmission from an internet-connected tablet (see 
Figure 14). For these tests, the team flew the same UAV that was used for the Oscoda collection, 
as well as the newly outfitted UGV, and a DJI Mavic UAV with thermal sensing capabilities.  

  
Figure 14. Left – simulated trespassers cross tracks at known hot-spot location; right – 
MTRI team demonstrates real-time receipt of data to Lake State Railway staff member 

4.2.2 Results 
Detection performance was comparable to what was observed in Oscoda, suggesting a degree of 
uniformity across sites. Researchers consistently verified detections from the UAV with a delay 
typically on the order of 90 seconds. They verified that the UGV could operate on the shoulder 
of the track and collect data suitable for the identification of trespassers. An example image 
collected from UGV is shown in Figure 15.  

 
Figure 15. Simulated trespasser captured using UGV-mounted camera 

Thermal imagery was collected at heights of 15, 25, 50, and 100 feet (see Figure 16). The 
qualitative characteristics of the data suggest that the thermal imagery collected at 15 and 20 feet 
are of potential use for automated trespasser detection. The data collected at the higher altitudes 
might still be of use to human analysts, but likely bump into the current limits of what is 
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algorithmically possible for automated detection. In particular, at high altitudes, even using a 
high resolution camera a person in an image might only occupy tens of pixels. With so few 
pixels, current machine vision algorithms have difficulty making correct classifications.  

 
Figure 16. Simulated trespassers captured using thermal camera on UAV operating at an 

altitude of 25 ft. 
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5. Conclusion 

This project demonstrated that UAV/UGV platforms with onboard computing capabilities can be 
used to detect potential trespassers. The system developed as part of this effort sends an email or 
text message to a monitoring authority within 90 seconds of detection from the mobile platform. 
The detection algorithm has a neural network backend, which operates in real time and transmits 
information about detections via cell networks. In addition, the technology developed as part of 
this effort is also suitable for deployment with static camera inputs. 

5.1 Roadmap to a Production System 
The technology developed as part of this effort provides a proof-of-concept demonstration. To 
deploy this technology as part of a production system, significant development effort is required 
to estimate a comprehensive performance envelope. A non-exhaustive list of issues to address 
includes: 

1. Sensitivity to lighting/environmental conditions 
2. Tuning of detection parameters 

3. Resolution of edge cases 
4. Optimizing transmission latency 

5. Data warehousing/logistics 
Some of these issues are partially relevant to the research realm, while others are simply 
software/engineering design. There is also a higher-order trade analysis to be done that ought to 
weigh the benefits and drawbacks of UxV-based remote sensing with static camera analysis to 
find the optimal pairing of the two. In addition, one might also consider how to make this 
technology more broadly available, by, for example, providing “kits” to any interested parties.  
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Abbreviations and Acronyms 

ACRONYM DEFINTION 
AI 

BNSF 
BTS 

BVLOS 
CCTV 

CNN 
DOT 

FAA 
FRA 

IR 
ML 

NAS 
NR 

PD 
RESTRAIL 

RPN 
SA 

TRID 
UAS 

UAV 
UK 

UP 

Artificial Intelligence 

Burlington Northern Santa Fe Railway. 
Bureau of Transportation Statistics 

Beyond Visual Line of Sight 
Closed-Circuit Television 

Convolutional Neural Network 
Department of Transportation 

Federal Aviation Administration 
Federal Railroad Administration 

Infrared 
Machine Learning 

National Academies of Science 
Network Rail 

Police Department 
Reduction of Suicides and Trespasses on Railway Property 

Region Proposal Network 
Situational Awareness 

Transportation Research International Documentation 
Unmanned Aerial System 

Unmanned Aerial Vehicle 
United Kingdom 

Union Pacific 
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